磁动势不变约束

{ia=idcosθiqsinθib=idcos(θ120)iqsin(θ120)ic=idcos(θ+120)iqsin(θ+120)\left\{ \begin{aligned} &i_a=i_d\cos\theta-i_q\sin\theta\\ &i_b=i_d\cos(\theta-120^\circ)-i_q\sin(\theta-120^\circ)\\ &i_c=i_d\cos(\theta+120^\circ)-i_q\sin(\theta+120^\circ) \end{aligned} \right.

[iaibic]=[cosθsinθ1cos(θ120)sin(θ120)1cos(θ+120)sin(θ+120)1][idiqi0]\left[ \begin{matrix} i_a\\ i_b\\ i_c \end{matrix} \right] = \left[ \begin{array}{ccc} \cos\theta & -\sin\theta & 1\\ \cos(\theta-120^\circ) & -\sin(\theta-120^\circ) & 1\\ \cos(\theta+120^\circ) & -\sin(\theta+120^\circ) & 1 \end{array} \right] \left[ \begin{matrix} i_d\\ i_q\\ i_0 \end{matrix} \right]

[idiqi0]=23[cosθcos(θ120)cos(θ+120)sinθsin(θ120)sin(θ+120)1/21/21/2][iaibic]\left[ \begin{matrix} i_d\\ i_q\\ i_0 \end{matrix} \right] = \frac{2}{3} \left[ \begin{array}{ccc} \cos\theta & \cos(\theta-120^\circ) & \cos(\theta+120^\circ)\\ -\sin\theta & -\sin(\theta-120^\circ) & -\sin(\theta+120^\circ)\\ 1/2 & 1/2 & 1/2 \end{array} \right] \left[ \begin{matrix} i_a\\ i_b\\ i_c \end{matrix} \right]

功率不变约束

[iaibic]=23[cosθsinθ12cos(θ120)sin(θ120)12cos(θ+120)sin(θ+120)12][idiqi0]\left[ \begin{matrix} i_a\\ i_b\\ i_c \end{matrix} \right] = \sqrt\frac{2}{3} \left[ \begin{array}{ccc} \cos\theta & -\sin\theta & \sqrt\frac{1}{2}\\ \cos(\theta-120^\circ) & -\sin(\theta-120^\circ) & \sqrt\frac{1}{2}\\ \cos(\theta+120^\circ) & -\sin(\theta+120^\circ) & \sqrt\frac{1}{2} \end{array} \right] \left[ \begin{matrix} i_d\\ i_q\\ i_0 \end{matrix} \right]

[idiqi0]=23[cosθcos(θ120)cos(θ+120)sinθsin(θ120)sin(θ+120)121212][iaibic]\left[ \begin{matrix} i_d\\ i_q\\ i_0 \end{matrix} \right] = \sqrt\frac{2}{3} \left[ \begin{array}{ccc} \cos\theta & \cos(\theta-120^\circ) & \cos(\theta+120^\circ)\\ -\sin\theta & -\sin(\theta-120^\circ) & -\sin(\theta+120^\circ)\\ \sqrt\frac{1}{2} & \sqrt\frac{1}{2} & \sqrt\frac{1}{2} \end{array} \right] \left[ \begin{matrix} i_a\\ i_b\\ i_c \end{matrix} \right]


dq轴电感

iabc=Cidq0ψdq0=C1ψabc=C1Labciabc=C1LabcCidq0=Ldq0idq0\boldsymbol i_{abc}=\boldsymbol C \boldsymbol i_{dq0}\\ \boldsymbol \psi_{dq0}=\boldsymbol C^{-1} \boldsymbol \psi_{abc}=\boldsymbol C^{-1} \boldsymbol L_{abc} \boldsymbol i_{abc}=\boldsymbol C^{-1} \boldsymbol L_{abc} \boldsymbol C \boldsymbol i_{dq0}=\boldsymbol L_{dq0} \boldsymbol i_{dq0}

C=23[cosθsinθ12cos(θ120)sin(θ120)12cos(θ+120)sin(θ+120)12]C1=23[cosθcos(θ120)cos(θ+120)sinθsin(θ120)sin(θ+120)121212]\boldsymbol C = \sqrt\frac{2}{3} \left[ \begin{array}{ccc} \cos\theta & -\sin\theta & \sqrt\frac{1}{2}\\ \cos(\theta-120^\circ) & -\sin(\theta-120^\circ) & \sqrt\frac{1}{2}\\ \cos(\theta+120^\circ) & -\sin(\theta+120^\circ) & \sqrt\frac{1}{2} \end{array} \right] \\ \boldsymbol C^{-1} = \sqrt\frac{2}{3} \left[ \begin{array}{ccc} \cos\theta & \cos(\theta-120^\circ) & \cos(\theta+120^\circ)\\ -\sin\theta & -\sin(\theta-120^\circ) & -\sin(\theta+120^\circ)\\ \sqrt\frac{1}{2} & \sqrt\frac{1}{2} & \sqrt\frac{1}{2} \end{array} \right]

Ldq0=C1LabcC\boldsymbol L_{dq0}=\boldsymbol C^{-1} \boldsymbol L_{abc} \boldsymbol C


To be continued.🍇